A RTl C L E W) Check for updates

Interacting evolutionary pressures drive mutation
dynamics and health outcomes in aging blood
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Age-related clonal hematopoiesis (ARCH) is characterized by age-associated accumulation
of somatic mutations in hematopoietic stem cells (HSCs) or their pluripotent descendants.
HSCs harboring driver mutations will be positively selected and cells carrying these muta-
tions will rise in frequency. While ARCH is a known risk factor for blood malignancies, such as
Acute Myeloid Leukemia (AML), why some people who harbor ARCH driver mutations do
not progress to AML remains unclear. Here, we model the interaction of positive and negative
selection in deeply sequenced blood samples from individuals who subsequently progressed
to AML, compared to healthy controls, using deep learning and population genetics. Our
modeling allows us to discriminate amongst evolutionary classes with high accuracy and
captures signatures of purifying selection in most individuals. Purifying selection, acting on
benign or mildly damaging passenger mutations, appears to play a critical role in preventing
disease-predisposing clones from rising to dominance and is associated with longer disease-
free survival. Through exploring a range of evolutionary models, we show how different
classes of selection shape clonal dynamics and health outcomes thus enabling us to better
identify individuals at a high risk of malignancy.
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ematopoiesis proceeds through an extensive differentia-

tion hierarchy rooted in a population of hematopoietic

stem cells (HSCs)!. The HSC pool is estimated to consist
of between 10,000 to 200,000 cells?>? and is among the most
productive and tightly regulated populations in the human body.
As individuals age, somatic mutations accumulate in HSCs, or in
early blood cell progenitors’-®. Some mutations confer a pro-
liferative advantage to certain cells, clones, in the hematopoietic
hierarchy and result in a disproportionate lineage representation
in the mature blood cell pool®>-6. This predicted imbalance is
observed with increasing frequency as individuals age and
accordingly has been called Age-Related Clonal Hematopoiesis
(ARCH) or, alternatively, Clonal Hematopoiesis of Indeterminate
Potential (CHIP)3-7. ARCH has been linked to an increased risk
for cancer and various cardiovascular (CVD) conditions includ-
ing inflammation, atherosclerosis, thrombosis, and sudden
death3-7. However, only a small proportion of individuals with
ARCH progress to disease, and mechanisms driving the trans-
formation to malignancy remain unclear. With respect to cancer,
specifically Acute Myeloid Leukemia (AML), the presence of
mutations in known AML driver genes at a high frequency is one
of the best predictors of later disease onset. However, these same
mutations are observed in healthy individuals who display no
signs of hematological malignancy”.

The evolutionary trajectory of somatic mutations in cellular
populations is governed by a combination of deterministic pro-
cesses, selection, and stochastic neutral processes (genetic drift)8.
Mutational profiles from blood afford us a unique opportunity to
study somatic evolutionary processes within, and among, indi-
viduals. Each blood sample is a reflection of the population his-
tory of the aging HSC pool, as well as the derived cell populations.
Through high-coverage sequencing, we are able to capture the full
spectrum of mutational variation within each blood population,
including variants segregating at extremely low frequencies which
are likely to be the targets of negative selection, and which are
typically not captured in low-coverage to moderate-coverage
sequencing efforts.

The ability to detect and quantify negative selection would
allow us to move beyond the comparison of exclusively adaptive
versus neutral models, which are conventionally used to model
cancer evolution® 11, and explore more diverse models that
consider negative selection!?!3. For example, the genetic back-
ground on which driver mutations arise has not been well char-
acterized and could explain variation in outcomes. Indeed, little
attention has been paid to the role of mutations occurring in non-
driver genes in shaping disease outcomes'#. For the remainder of
this paper, we will refer to mutations accumulating in non-driver
genes as “passenger mutations”. Many passenger mutations are
neutral and will have no impact on the fitness of the clone,
however, some passenger mutations will be mildly damaging and,
should they occur within a clone carrying a driver mutation,
could impact the rate of expansion of the driver-harboring clones
(Fig. 1a)1. As the majority of mutations (>99.9%) in cancers are
passenger mutations, modeling their appearance and contribution
to clonal fitness is critical to understanding mutation rates, cel-
lular evolution, and disease progression!®. As such, to fully exploit
the predictive potential of ARCH for cancer and CVD outcomes,
it is critical that we consider the full range of selective events
occurring in the mature blood pool.

Here, we use advanced statistical and deep learning techniques
to study the underlying evolutionary mechanisms driving cellular
dynamics in pre-cancerous and normal hematopoietic popula-
tions. We generated somatic variant calls from 92 individuals who
subsequently progressed to AML (preleukemic cases), and 385
age-matched and sex-matched healthy controls from the Eur-
opean Prospective Investigation into Cancer and Nutrition

(EPIC) study”-!7. Error corrected sequencing was performed on
whole blood for 261 genes (xGen® AML Cancer Panel) implicated
in AML at approximately 5000x coverage and is described in
detail elsewhere’.

Our approach to estimating intra-evolutionary processes
underscoring hematopoietic dynamics is outlined in Fig. 1b-d.
Briefly, we consider sequencing data from each individual to be
derivative of a hematopoietic stem cell population and extract
population-level summary statistics to describe patterns of
somatic mutations in the mature blood cell pool (Fig. 1b).
Summary statistics include counts of mutations, both overall and
parsed according to whether they are silent or missense/nonsense,
as well as summaries of variant allele frequency!®1°. Summary
statistics, such as these and others, are frequently used to test for
departures from neutrality in population genetics and, collec-
tively, can be used to discriminate among mutation rates and
selective pressures acting on polymorphisms segregating in
genomic regions of interest!®1118-22" Using a deep learning
classifier, trained and tested using clonal genomic sequences
simulated across a range of realistic evolutionary scenarios, we
demonstrate that we are able to distinguish between different
evolutionary pressures in populations with high accuracy. Sub-
sequently, we use our trained classifier to show how mutation rate
and selection work in conjunction to influence the evolutionary
trajectories of mutations in health and preleukemic blood cell
populations and highlight the critical role that mildly damaging
mutations play in preventing cancer prevention.

Results
Multi-task deep neural networks recover evolutionary
dynamics and parameters with high accuracy. To infer evolu-
tionary processes acting within each blood cell population, we
trained an ensemble of deep neural networks (DNNs), hereafter
“classifier”, using summary statistics derived from populations
simulated across a range of evolutionary scenarios as input fea-
tures, (Fig. 1b-d). A total of 4.6 million simulations were pro-
duced and we used these to create a look-up grid of parameter
combinations representing a comprehensive range of plausible
evolutionary scenarios (see “Methods” section, Table 1, Supple-
mentary Fig. 1). Forward simulations were performed and four
parameters were varied between simulations: mutation rate,
probability of a mutation being beneficial (p), coefficient of
positive selection (sp; corresponding to the relative fitness
advantage of cells with this mutation), and coefficient of negative
selection (sn; relative fitness disadvantage of cells with this
mutation)?3. In our simulations, we expect selection to act on
nonsynonymous sites and synonymous sites were simulated as
evolving under a neutral model. Each unique combination of the
four parameters corresponds to a distinct evolutionary model.
However, each model can be collapsed into one of four over-
arching evolutionary classes: neutral (no selection), positive
selection only, negative selection only, and combination models
which allow for the accumulation of mutations subject to both
positive and negative selection within the same cellular popula-
tion (see “Methods” section). Each neural network within our
ensemble classifies a population into one of the four evolutionary
classes and estimates the four parameters comprising a given
model (Fig. 1c). Through comparing the outputs of our classifier,
we can determine the uncertainty in the classifications (Fig. 1d).
We were able to obtain a high classification accuracy for
populations simulated under positive-only (0.99) and combina-
tion (0.97) models and relatively high accuracy for populations
simulated under neutral (0.80) and negative-only (0.83) models
when testing our classifier on a held-out test set of simulations
(10% of our simulated data) (Fig. le, Supplementary Fig. 2). A
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Fig. 1 Deep learning models can be used to discriminate amongst the evolutionary pressures shaping blood evolution. a The impact of selection and
genetic drift on shaping clonal dynamics. Cells accumulate somatic mutations in each division. The majority of mutations will be either neutral (blue) or
mildly damaging (red). Driver mutations will increase the fitness of a cell and increase the frequency in the population (green). However, mutations are
also able to rise in frequency through genetic drift. b Mutation summary statistics extracted from blood cell populations. Summary statistics fall into three
categories: (1) Counts of mutations in each blood sample (overall and stratified according to mutation type (silent and missense) across variant allele
frequency intervals, (2) The frequency of mutations (variant allele frequency), and (3) mutation annotation and respective ratios (proportion of missense
relative to total missense sites over the proportion of silent mutation relative to total silent sites). A total of 16 summary statistics are extracted from each
population. ¢ Deep Neural Network Architecture. Each DNN was trained as a multi-task neural network and classifies a population into one of four
overarching evolutionary classes and predicts four continuous parameters. Each neural network consisted of an input layer (16 units with each unit
corresponding to a summary statistic), three hidden layers (512 units), and five output layers which included the classification output (four units) and four
regression outputs (one unit each). d DNN Ensemble. We trained a total of ten deep neural networks (DNNs) independently, yet with identical
architecture. Through employing an ensemble-based approach, we are able to obtain a distribution of predictions for each population. e Classification
performance for simulated evolutionary classes. The y-axis represents the true evolutionary class, and the x-axis represents the predicted evolutionary
class. Classification accuracy ranges from blue (low accuracy) to red (high accuracy). We obtain a high classification accuracy across evolutionary classes
(94.8%). Positive and combination classes are predicted with 99.7% and 97.4%, respectively. We observe a reduction in accuracy in neutral (80.6%) and
negative (83.4%) classes of evolution.
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Table 1 Parameter ranges used to generate evolutionary simulations.

Class Mutation rate (1) Probability of a mutation being a driver Coefficient of positive Coefficient of negative
mutation (p) selection (s;,) selection (s,))

Neutral All 0 0 0

Positive selection  All 0<p<05 p=1 0<s,<0.05 0

Negative selection All 0 0 0<s,<0.05

Combination All 0<p<i 0<s,<0.05 0<s,<0.05

perturbation analysis of our inverse model showed that we can
predict positive-only or combination evolutionary classes with
high certainty but that our model has some difficulty distinguish-
ing between neutral and negative-only selection when there were
few mutations. To ensure that our model was able to perform well
on data from evolutionary parameters not included in our
training data, we generated a novel set of simulations using new
parameter combinations that do not appear in the training set.
We find that we are able to achieve a similar degree of accuracy in
evolutionary class prediction (Supplementary Fig. 3). Fewer
mutations, or a lower level of variability in the population, could
arise following a selective sweep or when populations are subject
to a lower mutation rate (Supplementary Fig. 4). In addition, a
lack of mutational information could be attributable to the
selective removal of SNPs as a result of negative selection
(Supplementary Fig. 5). Distinguishing between neutral evolution
and negative selection is a challenge in population genetics as
weakly damaging mutations can segregate in the population at
low frequencies and have a mild impact on reducing variability at
linked loci!?13. Further, while we can distinguish between
overarching evolutionary classes with high accuracy, as well as
the presence or absence of positive or negative selection, our
model struggles to discriminate amongst the weaker coefficients
of selection which is notoriously challenging in population
genetics!2. As such, we limit our inferences of selective dynamics
in blood to the overarching evolutionary class which we are able
to discriminate with high accuracy.

Hematopoietic populations show evidence of positive and
negative selection regardless of disease outcome. We applied our
classifier to preleukemic cases and healthy controls to infer
population-level evolutionary processes. We find that in the
majority of individuals (71%), both controls and cases, the hema-
topoietic population does not evolve neutrally (Fig. 2a). We reject
models of neutral evolution in the majority of cases (79%) and
controls (64%) and we observe a significantly higher departure from
neutrality in cases than controls (y3(1)=7.32, p-value =0.007,
Neases = 735 Neontrol = 246). The majority of cases (62%) and the
plurality of (43%) control fit combination classes of evolution; in
other words, we are able to detect signatures of both positive and
negative selection in their blood biopsy indicating a functional
impact of negative selection acting on passenger mutations. We
observe that higher levels of predictive uncertainty correspond with
a reduction in segregating mutations in the mature blood cell pool,
in keeping with our classifier’s performance on simulated popula-
tions (Supplementary Fig. 6). In summary, few cases or controls are
evolving neutrally, and we find evidence of positive selection and of
negative selection in the majority of preleukemic cases and healthy
controls.

Hematopoietic populations evolve in an age-dependent man-
ner. As ARCH is known to be an age-associated phenomenon, we
investigated if there is any association between the age of an
individual and the selective pressures governing their hemato-
poietic dynamics. Participants were binned into age groups

spanning ten-year intervals and the proportion of participants in
each age range fitting each evolutionary class was calculated. We
find clear associations with age and the dominant class of evo-
lution in individuals (Fig. 2b). Specifically, we observe an age-
related decline in the proportion of controls fitting negative-only
or neutral classes of evolution and a parallel increase in controls
fitting the combination class. Our results are consistent with a
model in which individuals accumulate passenger mutations as
they age, some of which will have a slightly damaging effect. In
parallel, with increasing mutation accumulation, there is an
increased likelihood of a rare driver event occurring which would
cause an individual to shift to a combination, or positive-only,
class of evolution. We find that many preleukemic cases show
evidence of positive selection at a younger age than controls. In
particular, in preleukemic cases, where age-associated clonal
expansions have been previously reported, we observe an
increased overall proportion of individuals fitting combination
models in younger age groups indicating that driver events have
occurred earlier. At a young age, driver mutations are likely to be
arising on a background with fewer mildly damaging passenger
mutations and thus may experience a relatively higher fitness
advantage compared to the same mutation arising on a back-
ground with a greater number of mildly damaging passenger
mutations; a hypothesis that we investigate in the following
section.

Controls have a higher proportion of passenger-to-driver
mutations than cases. To investigate if the proportion of muta-
tions in known driver genes compared to non-driver genes could
explain some variation in outcomes, we compared the types and
patterns of mutations between the cases and controls. We
annotated mutations as drivers if they occurred in driver genes
found to be highly mutated in the Cancer Genome Atlas Acute
Myeloid Leukemia project (Supplementary Fig. 7). We first asked
whether cases simply have more mutations, thus predisposing
their blood populations to cancer. Consistent with the previous
reports7, our cases had more mutations on average than age-
matched healthy controls (Wilcoxon rank-sum test, W = 12,196,
df = 1, p-value = 2.9e—06, N yges = 92, Meontrols = 385). and, in the
combination class of evolution, more mutations in known driver
genes (Supplementary Fig. 7). A higher mutation count in cases is
consistent with our classifier’s prediction that there is a small
increase in mutation rate in a preleukemic context (mean
mutation rate: g =1.2e—10 per bp per division) compared to
healthy controls (mean mutation rate: y =1.1e—10 per bp per
division) (Wilcoxon rank-sum test, W = 14336, df = 1, p-value =
0.004, #cases = 92, Meontrols = 385) (Fig. 2c—d). We estimated the
mutation rate assuming a population size of 10,000 and we have
scaled our estimates to account for varying estimates of HSC
population size (Supplementary Figs. 8-10).

Intriguingly, we do observe mutations in driver genes in
healthy controls fitting positive models of selection. It is possible
that these individuals do not progress to disease if driver
mutations are arising in competing clones, thus preventing one
clone from rising to dominance. However, another possible
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Fig. 2 Hematopoietic evolution is governed by a range of evolutionary dynamics. a Evolutionary classes in preleukemic (red) and healthy (blue) blood
populations. The majority of blood populations do not evolve neutrally (72%). Similarly, only 9% of individuals fit positive models of evolution. Populations
do not evolve neutrally in the majority of preleukemic cases (79%) and healthy controls (64%). The majority of preleukemic (62%) and the plurality of
healthy (43%) individuals fit combination (both beneficial and damaging mutations arising) classes of evolution. b Age-associations across evolutionary
class predictions. Participants were stratified into 10-year age windows. Age intervals range from 30-40 (light blue) to 70-80 (dark blue). Each bar
represents the proportion of individuals within each age bin fitting each evolutionary class for preleukemic individuals (n =92) and healthy controls (n =
385). Standard errors for each proportion were calculated by p(1—p)/n where p is the proportion of individuals fitting a particular class and n is the total
population. We observe significant differences in the proportion of individuals fitting combination classes of evolution in the 50-60 age range (Pearson’s
chi-squared test, X2 = 4.54, p-value = 0.03), the 60-70 age range (Pearson's chi-squared test, X2 =10.55, p-value = 0.001), and in the neutral class of
evolution in the 60-70 age range (Pearson’s chi-squared test, X2 = 4.73, p-value = 0.03). ¢ Range of mutation rate estimations across a cohort of
participants. We show the estimated mutation rate for each sample from each DNN in our ensemble (gray). The mean estimate from the classifier outputs
is shown in red and samples are sorted by the mean estimated mutation rate. Mutation rates (y-axis) are log-transformed and scaled to a population size of
10,000. d Preleukemic blood populations have a higher mutation rate than healthy controls. Each boxplot illustrates the distribution of estimated mutation
rates across samples grouped according to outcome status (control (n = 385): blue, preleukemic (n=92) = red), the midline represents the medians, the
upper and lower bounds the interquartile ranges, and the whiskers extend to 1.5 times the interquartile range. The level of significance is indicated as
follows: ns: p> 0.0, *p-value <= 0.05, **p-value <= 0.01, ***p-value <= 0.001, ****p-value <= 0.0001. Preleukemic cases are found to have a modest yet
significantly higher mutation rate than controls (Two-sided Wilcoxon rank-sum test, W = 14336, df =1, p-value = 0.004). e Relative passenger to driver
mutation proportion across evolutionary classes. The number of mutations in known driver genes is plotted against the number of mutations in non-driver
genes for each individual blood population with healthy controls shown in blue and preleukemic individuals in red. We used linear regression to compare
the relationship between the number of mutations falling into known driver genes versus non-driver genes in cases (red) and controls (blue) fitting
combination and positive evolutionary classes. The 95% confidence level interval for predictions from each linear model is indicated in gray. In the
combination model, we find a significant interaction between the number of mutations occurring in non-driver genes compared to driver genes in controls
(#=5.76) and cases (= 0.642); F (1, 224) = 28.5, p-value = 2.23e—07. However, in the positive class, we did not find a significant interaction between
the number of mutations occurring in non-driver genes compared to a driver in controls (8= 0.16) and cases (f = 0.17); F(1,12) = 0.0004, p-value = 0.98.

explanation for the differences in outcome is the proportion of classes. In the combination model, we find a significant
driver to passenger mutations. Using linear regression, we interaction between the number of mutations occurring in non-
compare the relationship between the number of mutations driver genes compared to driver genes in controls (8 = 5.76) and
falling into known driver genes versus non-driver genes for cases cases (f=0.642); F (1, 224) =28.5, p-value =2.23e—07. How-
and controls fitting the combination and positive evolutionary ever, in the positive class, we did not find a significant interaction
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between the number of mutations occurring in non-driver genes
compared to driver genes in controls (8 =0.16) and cases (f§ =
0.17); F(1,12) = 0.0004, p-value = 0.98. However, in the positive
comparison, our sample size is low, so we may not be powered to
detect such a difference. The increased proportion of mutations in
passenger genes compared to driver genes in the combination
class is consistent with a model in which negative selection acting
on mildly damaging passenger mutations is playing a protective
role in inhibiting or stalling clonal expansions.

Distinct patterns of inferred pathogenicity associate with
evolutionary classes. To determine whether some passengers are
playing a protective role, we scored each mutation according to
how likely it was to affect protein function and conservation after
blood sample classification. In doing so, we can independently
evaluate the performance of our evolutionary predictions. We
scored mutations using the Combined Annotation-Dependent
Depletion (CADD v. 1.4) algorithm (Fig. 3a)2°. Using a combi-
nation of functional prediction, conservation, epigenetic mea-
surements, gene annotations, and the sequence surrounding a
given variant, CADD provides a measure of the functional impact
of single nucleotide variants, and small insertions/deletions, in the
genome. CADD scores assess whether a mutation alters protein
function, and have difficulty distinguishing between whether it
changes protein expression, inhibits its activity, or causes the
protein to be constitutively active; as such we will call mutations
with high CADD scores “function-altering”.

Overall, we observe that mutations falling in known driver
genes tend to have a higher CADD score than mutations in non-
driver genes. However, in keeping with our expectations of
neutral evolution, we do not observe a significant difference in
CADD score between mutations in known driver genes (n = 32)
and non-driver genes in neutral cases (n = 899) (Wilcoxon rank-
sum test, W=75985, p-value=0.3), suggesting that these
mutations are not function-altering and confer no relative fitness
advantage or disadvantage to the clone in which they are found.
In comparison, in individuals showing evidence of positive
selection (positive (n =47) and combination (n=401), muta-
tions in known driver genes had significantly higher CADD
scores than mutations in non-driver genes (n =21 and n = 1487,
for positive and combination classes, respectively) (Wilcoxon
rank-sum test, positive models: W =548, p-value=0.001;
combination models: W = 278,136, p-value < 2.2e—16). Further,
we observe that the average CADD score assigned to passenger
mutations in negative-only models (n = 153) is significantly lower
(Wilcoxon rank-sum test, W =39,298, p-value =0.004) than
passenger mutation CADD scores in the neutral class (n = 899)
suggesting that negative selection plays a role in removing the
more damaging mutations and decreasing the overall pathogeni-
city of segregating mutations. The role of negative selection in
decreasing the overall pathogenicity of the blood pool is further
supported by the average CADD scores of passenger mutations in
the combination class being greater and smaller than the average
score of passenger mutations in the negative-only and neutral
class, respectively. In the absence of recombination, mutations
which would typically be removed are able to continue to
segregate in the blood population in the presence of positively
selected driver mutations, and, accordingly, we observe higher
average pathogenicity of passenger mutations in the combination
class. Finally, it is worth noting that the passenger mutations in
the positive-only class have significantly lower pathogenicity than
those in the combination class. Passenger mutations with higher
pathogenicity are likely to be subject to stronger negative selection
thus conferring a protective effect to the individual in the
presence of positive selection acting on drivers. A better

understanding of how these potentially protective mutations are
distributed across genes would allow us to identify which genes
might be critical in preventing clonal expansions.

Clusters of genes are enriched for function-altering mutations
across evolutionary classes. To investigate if certain genes are
more frequently found to play a protective role when mutated, we
determined which genes are enriched for function-altering
mutations in each evolutionary class, as well as the overlap of
genes with function-altering mutations across evolutionary clas-
ses (Fig. 3b). For this comparison, we used a lower threshold of a
CADD score of 10 to determine which mutations are likely to be
function-altering. The majority of genes harboring function-
altering mutations are observed in combination and neutral
classes of evolution. However, there are subsets of genes that are
enriched exclusively for function-altering mutations in the pre-
sence of positive or negative selection. Reassuringly, we find that
many known driver genes (DNMT3A, TET2, IDH2, TP53) are
enriched for function-altering mutations among positive and
combination classes of evolution only and not among neutral or
negative classes of evolution (Supplementary Fig. 11). Further, we
observe that there is an overlap of genes enriched for function-
altering mutations in negative-only and combination classes of
evolution indicating that these genes might experience stronger
negative selection.

We next asked if the inferred pathogenicity of mutations in the
dominant clone corresponds with the frequency at which it is
observed in the mature blood cell pool. To do so, we evaluated the
relationship between the CADD score and the frequency of the
dominant clones, defined as the clone with the highest variant
allele frequency in an individual, in each class (Fig. 3c). We find
that clones are able to rise to fixation in the absence of both
negative and positive selection where the primary driving force of
evolution is genetic drift. Clones rising to a high frequency
stochastically could, in part, be explained by a reduction in the
effective population size of the HSC population owing to a small
population of stem cells with a higher fitness dominating blood
cell production. With a reduced population size, mutations are
able to rise to a higher frequency and become fixed in a
population more rapidly. However, only mutations with a low
CADD score are found at high frequencies in the neutral class. As
expected, in the presence of negative selection, we observe a
depletion of clones in the higher pathogenicity categories as they
have likely been removed by selection. Clones that persist in the
negative-only model could indicate a functional threshold at
which mutations are not efficiently removed by selection and
continue to segregate in the population. Conversely, in the
positive-only class, clones, including those with high pathogeni-
city, are found at higher frequencies. We observe a higher
variance in CADD scores in the combination class which is
consistent with our expectation that, when neither positive nor
negative selection are able to act efficiently, variants will segregate
at intermediate frequencies rather than sweeping to high fixation
or being purged from the population, respectively.

Selective interference may be associated with slowing clonal
expansions. Having established that in the combination class,
controls have significantly higher non-driver to driver ratios and
that these non-drivers have significantly higher CADD scores
than those in the positive-only class, we then ask whether non-
drivers played a role in preventing progression to AML through
selective interference. Selective interference is particularly relevant
as studies report that driver mutations, while found in both
healthy controls and preleukemic cases, tend to segregate at a
much higher frequency in a preleukemic context’. We propose
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Fig. 3 Distinct patterns of inferred pathogenicity and clonal dynamics are associated with evolutionary class predictions. a Predicted functionality of
mutations in each evolutionary class. Average CADD scores were calculated for mutations in known driver genes (green) and non-driver genes (red) and
are presented as mean values +/— SEM. The level of significance is indicated as follows: ns: p > 0.0, *p-value <= 0.05, **p-value <= 0.01, ***p-value <=
0.001, ****p-value <= 0.0001. We capture a significant (Two-sided Wilcoxon rank-sum test, positive models: W = 548, p-value = 0.001; combination
models: W = 278136, p-value < 2.2e—16) enrichment of high CADD scores in driver genes compared to non-driver genes. We do not observe a significant
difference between CADD scores across mutations in driver genes and non-driver genes in neutral classes (Two-sided Wilcoxon rank-sum test, W =
7598.5, p-value = 0.3), The average CADD score assigned to passenger mutations in negative models is significantly lower (Two-sided Wilcoxon rank-
sum test, W =39298, p-value = 0.004) than passenger mutation CADD scores in the neutral class. b Distribution of function-altering mutations in genes
across evolutionary classes. The UpSet plot shows the distribution of function-altering mutations (CADD >10) falling in genes across patients in different
evolutionary classes. The total number of genes mutated in each evolutionary class is shown on the left (positive = green, negative = red, combination =
orange, neutral = blue). The dark circles indicated classes with overlapping genes and the connecting bar indicated multiple overlapping genes. ¢ Inferred
pathogenicity of the dominant clones is correlated with the variant allele frequency across different evolutionary classes. We isolated the dominant clone
within each individual blood pool. The CADD scores of each clone were binned into intervals of 10 and each boxplot illustrates the distribution of variant
allele frequencies for each interval, the midline represents the medians, the upper and lower bounds the interquartile ranges, and the whiskers extend to 1.5
times the interquartile range. Plots are faceted according to evolutionary class (positive (n =30): green, negative (n = 65): red, combination (n=229):
orange, neutral (n=158): blue). We observe a wider distribution of CADD scores in neutral and combination models. In positive classes of evolution,
clones are found at a higher frequency suggesting that they sweep to fixation. Similarly, in negative models of evolution, we observe a surplus of clones in
the low CADD score bins which appear to segregate at a lower frequency. d Impact of Negative Selection on Clonal Expansions. We investigated if negative
selection acting on passenger mutations impacted clonal expansions in a healthy and preleukemic context. To do so, we plotted the log-transformed variant
allele frequency (VAF) of mutations found in cases and controls predicted to be evolving in positive class (green) and combination (orange) classes. Each
boxplot illustrates the distribution of log10-transformed VAFs for each group, the midline represents the medians, the upper and lower bounds the
interquartile ranges, and the whiskers extend to 1.5 times the interquartile range. The evolutionary class is denoted on the x-axis (combination/positive)
and preleukemic/control status is indicated by a (PL) or (C), respectively. The level of significance is indicated as described above. VAF distributions were
plotted separately for preleukemic individuals (light green/ light orange) and healthy controls (dark green/dark orange). We find that we are not able to
discriminate between VAF distributions of mutations in healthy and preleukemic individuals in the positive class. Further, we are not able to discriminate
between positive models of evolution and preleukemic individuals who fit combination models of evolution. However, we find that clones in controls fitting
combination classes of evolution have a significantly lower VAF distribution compared to both preleukemic cases fitting combination models (Two-sided
Wilcoxon rank-sum test, W = 254988, p-value < 2.2e—16, NcombinationPLy = 403, Necombinationccy = 1095) and clones in controls fitting positive models (Two-
sided Wilcoxon rank-sum test, W = 25180, p-value = 0.02, n,sitivec) = 34.
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that selective interference, where the linkage between sites under
multiple selective pressures will define the overall impact of
selection acting on the population, could play a role in preventing
mutations from rising to a high frequency in controls either
through passenger mutations hitchhiking within the same clones
as driver mutations, or if driver mutations arise in different clones
and are competing for dominance in a finite cell pool!3:26:27, We
expect that clones under purely positive selection will be found at
higher frequencies in blood compared to those which are subject
to a combination of positive and negative selection where inter-
ference might play a role in preventing selective sweeps.

We find that mutations in preleukemic cases fitting a
combination class (n=403) tend to segregate at a significantly
higher frequency compared to controls (n=1095) (Wilcoxon
rank-sum test, W= 254,988, p-value < 2.2e—16) (Fig. 3d). How-
ever, we do not observe a difference in the frequency at which
mutations are found to segregate between cases and controls
fitting positive models of evolution or between cases fitting
combination and positive models of evolution. Decreased variant
allele frequencies in healthy individuals fitting combination
models are consistent with our prediction that selection acting
on a subset of mutations in healthy controls prevents progression
to disease even in the presence of positive selection. However, we
do observe signatures of negative selection in preleukemic
contexts which suggests that the impact of selection acting on
passenger mutations, while detectable through our methods
which incorporate multiple summaries of the data, remains
negligible with respect to clonal progression. Further, we do
observe that, while not significant owing to sample size,
preleukemic cases fitting combination models tend to have a
later age of diagnosis than preleukemic cases fitting positive-only
evolutionary classes indicating that negative selection might play
a role in slowing progression to disease.

Indeed, we find that ARCH occurring in the absence of positive
selection, that is individuals who fit negative or neutral classes of
evolution, is associated with a lower risk of progression to AML
compared to individuals who have signatures of positive selection
(log-rank test, p-value =2e—04) (Fig. 4a). We find that
individuals who fit combination classes of evolution have an
approximately two-fold increased risk of progressing to AML
compared to individuals fitting neutral models of evolution
(hazard ratio, 2.43; 95% confidence interval, 1.45-4.06, Fig. 4b).

Owing to the small number of individuals fitting positive only
classes of evolution, we cannot infer if the negative selection
acting on passenger mutations in individuals fitting combination
classes of evolution reduces the risk of progressing to AML.
However, a scenario where multiple clones compete for
dominance, thus maintaining clones at intermediate frequencies,
would explain the greater risk conferred to individuals fitting
combination classes of evolution. Our findings suggest that not all
passenger mutations are equal in that some might be more
efficient in preventing disease-associated clonal expansions.
Further, through accounting for mutations that segregate along-
side driver mutations, we would be able to greatly improve our
understanding of ARCH as a biomarker for disease and better
predict who is at risk of progressing to cancer.

Discussion

Our ability to determine the evolutionary processes governing the
impact of age-associated mutations on hematopoietic fitness is
dependent on the deep genomic interrogation of blood profiles
and our ability to discriminate amongst alternative evolutionary
models. Estimates of cellular evolutionary features are dependent
on the simultaneous inference of mutation and selection. Most
tests to detect selection are based on the null hypothesis that
mutant alleles are selectively neutral and have proven to be highly
successful in detecting positive selection in germline and somatic
tissues. However, the detection of negative selection in popula-
tions has remained challenging as they are reliant on the capture
of rare variants which, prior to deep coverage sequencing, are
typically not reliably detected in cellular populations'?. Many
tests of neutrality, including dN/dS ratios which are often used to
study selection in paired tumor-normal samples, are only sensi-
tive to a conservative range of selection parameters and can be
confounded by the timing of events. However, determining the
mode of selection acting on a mutation is a key parameter to
understanding tumor evolution as it offers critical insight into the
evolutionary fate of the mutation in the population. In a somatic
context, this becomes increasingly more important as negative
selection acting on mutations co-occurring in the same clone as
positively selected driver mutations could significantly alter the
evolutionary trajectory of the mutant expected under positive or
neutral evolution alone.
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Using newly developed population-genetic neural network
approaches which exploit the impact of linkage in clonal systems
and combinations of informative summaries of mutation
datal®13, we are able to discriminate signatures of negative
selection from neutrality. Our methods can classify different
selection scenarios in cells sampled from individual liquid biop-
sies and enable us to evaluate the combined impact of both
positive and negative mutations on patterns of clonal dominance
in the mature blood cell pool of healthy and precancerous indi-
viduals. We find that hematopoietic populations largely do not
evolve neutrally and that the presence of negative selection acting
on mutations in non-driver genes plays an important role in
disease development across aging blood systems. In line with
other studies, we find that we do observe ARCH occurring in
blood populations presumed to be evolving strictly under neutral
evolution, however, in most instances, the trajectory of clonal
mutations in the blood appears to be governed by the complex
interplay of both positive and negative selection?. Further, we
estimate the rate at which mutations accumulate in the aging
hematopoietic system in both healthy and premalignant contexts.
The rate at which ARCH-associated mutations occur in healthy
and premalignant contexts has, to our knowledge, not been
previously characterized owing to genomic and statistical
challenges.

Our approaches untangle interacting and sometimes con-
founding factors in somatic evolution. We captured an important
phenomenon within blood: that damaging mutations accrue
along with ARCH-associated driver mutations. Negative selection
acting on linked passenger mutations might slow the rate of
clonal expansions. The presence of negative selection acting on
passenger mutations in the presence of driver mutations offers a
potential explanation for why some individuals who harbor driver
mutations do not progress to disease. However, negative selection
appears to play an important role in lowing the overall patho-
genicity of the mature blood cell pool, thus maximizing the fitness
of the individual; a finding which suggests that there could be an
advantage to retaining mildly damaging mutations in cellular
populations if they confer a protective effect in the presence of a
driver mutation. Indeed, our survival analyses demonstrate that
the evolutionary forces shaping ARCH are the same in that
patterns of clonal hematopoiesis fitting negative or neutral classes
of evolution are typically associated with a lower risk of pro-
gression to AML. Future work with long-read sequencing and
longitudinal sampling is required to experimentally phase somatic
mutations genome-wide, will help determine whether such
mutations are occurring in the same or different clones thus
allowing us to investigate the effects of both individual mutations,
as well as the epistatic interactions between linked mutations and
clonal trajectories.

Methods

Sequencing and data processing in EPIC cohort. Participant selection, sequen-
cing, and mutation calls have been described in full elsewhere’. Briefly, all DNA
samples were obtained from individuals who enrolled in the EPIC study between
1993 and 1998 for individuals who provided a blood sample prior to progressing to
AML (n =92) and from individuals who did not develop any hematological
malignancy during follow-up (# = 385). The median age at the time of recruitment
into the cohort was 57 years old (range: 36-74.4 years old). The median time
between sample collection and AML diagnosis or censorship was 6.3 years (range:
0.03 years—12.4 years) and 11.9 years (range: 3.36 years—14.9 years), respectively.
Cases and controls were matched to an approximately 1:4.5 case/control ratio.
Error corrected duplex sequencing was performed on all samples for 261 genes
(xGen® AML Cancer Panel, https://www.idtdna.com/pages/products/next-
generation-sequencing/targeted-sequencing/hybridization-capture/predesigned-
panels/xgen-aml-panel) implicated in AML at approximately 5000X coverage.
Variants were retained if they were supported by a minimum of five reads with a
minimum of two reads in each direction. Following variant calling, mutations were
annotated using ENSEMBL v.58, and VAGIENT for transcript and protein
effects?®. Annovar was used for additional functional annotation®’.

Calculation of summary statistics. Summary statistics were calculated per indi-
vidual with sequencing data from each individual considered to be derivative of an
HSC population. We calculated a total of 16 summary statistics for each hema-
topoietic population including population genetics statistics used to describe the
site frequency spectrum (Tajima’s D'8 and Fay and Wu’s H!®), counts and ratios of
synonymous and nonsynonymous mutations both overall and for low (>0.1),
intermediate (0.1-0.8), and high (>0.8) variant allele frequency windows, and the
number of mutations in known driver genes.

Simulations of hematopoietic populations across evolutionary scenarios.
Hematopoietic populations were simulated as clonal haploid populations evolving
forward in time using the software SFScode?3. We simulated haploid populations
with an effective population size of 10,000 and a null recombination rate. Our
initial modeling of the HSC population size (n = 10,000) was derived from the
Abkowitz et al. (2002) estimates of the number of HSCs in mammals. However,
following the publication of Lee-Six et al., which used an Approximate Bayesian
approach to estimate that the HSC pool (n = 40,000-200,000), we adjusted our
mutation rate predictions to account for a range of HSC population sizes (as shown
in Supplementary Fig. 10). The expected number of mutations in a population (6)
is a product of the population size N and the per generation mutation rate (4): 0 =
4Ny. Estimates of mutation rate can be extended to account for the range of
population size estimates (10,000-200,000) that exist, and as they evolve in the
future, for the hematopoietic stem cell population. Mutation rates were determined
by evaluating the (1) length of the sequencing panel used, (2) an average number of
mutations observed in the EPIC cohort, and 3) estimates of population size.

A 1 Mb region of the genome with a 1:2 ratio of synonymous and non-
synonymous positions was simulated, where synonymous sites are not subject to
selection. We simulated a grid of evolutionary scenarios across a plausible range of
parameters (Table 1). Selection coefficients affecting each nonsynonymous
mutation are sampled from a gamma distribution3!. Owing to variation associated
with cancer evolutionary parameters, we simulated ranges of mutation rates (from
le—7 to le—5 mutations per base pair per generation), proportions of beneficial
mutations (from 0 to 1; 0 being that all mutations are deleterious and 1 is that all
mutations are beneficial), and rate parameters for the gamma distribution from
which selection coefficients are sampled (from 0.001 to 0.005). The shape («) and
rate (f) parameters of the gamma distribution were also varied. Effectively, in a
subset of simulations, the rate parameter for the gamma distribution of negative
selection coefficients ranges from 0.001 to 0.02475. We compute the means of
selection coefficients based on the rates and shapes of the tested gamma
distribution (¢ = a/p). For each set of parameters, we perform 2000 replicates. In
addition, we simulated populations evolving under neutral models of evolution (no
selection). Summary statistics for simulated populations were calculated as
described for the EPIC participants. The number of mutations subject to positive
selection in each simulation is a function of the probability of a mutation being
beneficial (p) and the number of nonsynonymous mutations. Each simulation was
classified into one of four overarching evolutionary classes if the following
conditions were met:

Probability of a mutation being beneficial. While the probabilities of a mutation
being beneficial range from 0 to 1, we limited the simulations used in our training
and testing data set to values ranging between 0 and 0.5 and 1 (only positive
selection), as we did not think that a scenario in which more than half the
mutations are driver mutations was feasible.

Software for statistical analyses. Following the simulation of data using
SESCode, all training, and testing of deep neural networks, analyses and figures
were performed in the R statistical programming environment (v.4.0.4). Libraries
that are required include plyr v.1.8.6%2, dplyr v.1.0.5%3, UpSetR v.1.4.0%4, Rtsne
v.0.153%, Ismeans v.2.3.0-03°, forestmodel v.0.6.2%7, survival v. 3.2-1038, survminer
v.0.4.9%, and keras v.2.4.0%0, Figures were generated using ggplot2 v.3.3.341, ggpubr
v.040%2, ggplotify v.0.0.743, and patchwork v.1.1.144. All Wilcoxon rank-sum tests
are two-sided unless otherwise specified. The reproducible code is available at
https://github.com/kimskead/popgenArch®°.

Evaluating fit between simulated summary statistics and summary statistics
from EPIC individuals. t-Distributed Stochastic Neighbor Embedding (t-SNE) was
used to visualize the distribution of summary statistics for simulated and observed
blood populations. A total of 5,000 sets of summary statistics were randomly

sampled from each simulated evolutionary class for a total size of 20,000 simulated
sets of summary statistics. All of the summary statistics from the EPIC cohort were
included. Dimensionality reduction was completed in R using the package Rtsne.

DNN ensemble. We collated summary statistics from each simulation to create our
main training dataset of populations evolving under different selection pressures.
Our simulations were subdivided into training (90%) and test (10%) sets. To create
a unique training set for each instance of our DNN ensemble, we further sub-

sampled our training set into 10 sets consisting of 250,000 unique evolutionary

models. Sampling was done with replacement and the number of models in each
class was downsampled to match the minority class to avoid class imbalance. We
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trained a total of ten deep neural networks (DNNs) independently using simulated
data only. Each neural network consisted of an input layer (16 units), three hidden
layers (512 units), and five output layers which included the classification output
(four units) and four regression outputs (one unit each). We applied dropout
regularization (0.1) to each hidden layer and used a real activation function. We
applied a sparse categorical cross-entropy loss function to the classification task
and mean square error was used to calculate loss associated with the parameter
estimations. Each model was trained using Adam with a batch size of 500 for 20
epochs?®. All hyperparameters were manually optimized. Each DNN was trained as
a multi-task neural network to both classify a population into one of four over-
arching evolutionary classes (positive, negative, combination or neutral) and pre-
dict four continuous parameters (mutation rate (i), the probability of a mutation
being beneficial (p), coefficient of positive selection, and coefficient of negative
selection). Our ensemble-based approach runs for approximately 4 h on a 2.3 GHz
Quad-Core Intel Core i7 Processor. A benefit of our ensemble-based approach is
that, for each blood cell population, each DNN emits a softmax probability dis-
tribution across the four overarching evolutionary classes. In a conventional clas-
sification task, the class with the highest probability will be selected as the best fit.
However, as we are employing an ensemble-based approach, we can obtain a
distribution of predictions for each population so as to measure the uncertainty
associated with each prediction. After each DNN was trained, we assessed our
ability to accurately predict the true evolutionary class using a held-out set of
simulated data which was split from the training data prior to sampling training
sets for each DNN. Any instance where there are identical sets of summary sta-
tistics in the training and test set were removed from the test set prior to evaluation
in order to eliminate information leakage. To ensure that our classifier was able to
generalize well to parameter combinations not included in the training data, we
generated an additional test set of simulated data wherein the gamma distributions
from which parameters are drawn were modified thus generating novel values and
parameter combinations not included in the training and test set. Following
training and testing using simulated data, each trained DNN in our ensemble was
used to estimate the overarching evolutionary class and evolutionary parameters
using summary statistics derived from healthy and preleukemic blood populations.
For each individual, we calculated the mean and standard error for each softmax
probability across the four evolutionary classes and accepted the class with the
maximum softmax probability as the class of best fit. Similarly, for each regression
task, we calculate the mean and standard error for each parameter across the
predictions for each individual.

Predicting best fit class and estimating parameters for EPIC individuals. To
obtain the best fit evolutionary class for each individual, we calculated the mean
and standard error for each softmax probability across the four evolutionary classes
and accepted the class with the maximum softmax probability as the class of best
fit. To calculate age distributions of evolutionary classes, we bin participants into
10-year age windows. We calculate the proportion of individuals within each age
bin fitting a particular evolutionary class for preleukemic individuals and healthy
controls. Standard errors of each proportion were calculated by \/px (1 — p)/n
where p is the proportion of individuals fitting a particular class and # is the total
population. We calculate the mean and standard error for parameter predictions to
estimates for mutation rate and the probability of a mutation being beneficial.

Predicted fitness effects of mutation. Scaled CADD scores for mutations in each
evolutionary model were obtained using the online variant annotation tool?”.
Average CADD scores were calculated for mutations in known driver genes and
known passenger genes and used to independently validate mutational dynamics in
each model. To identify which genes were enriched for function-altering mutations
in each evolutionary model, we sampled all mutations with a scaled CADD score of
greater than 10, thus retaining the mutations that are most likely to be function-
altering, and plotted the intersection of mutations in each gene across the four
different evolutionary classes. Finally, to investigate the association between the
average pathogenicity of the dominant clone in each evolutionary model, we
extracted the clone with the highest variant allele frequency: the dominant clone.
The variant allele frequency of the dominant clone was plotted for each CADD
interval using bin sizes of 10.

Distribution of function-altering mutations in genes across evolutionary
classes. An upset plot was used to visualize the distribution of function-altering
mutations in genes across the four evolutionary classes. Mutations with a scaled
CADD score of greater than 10 were sampled as described above. The upset plot
was created using the R package UpSetR.

Survival analyses. Survival analyses were performed using the Kaplan-Meier and
Cox proportional hazards models. Statistical significance was assessed using a log-
rank test and significance was determined at p < 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data included here were collected and published in previous Nature Publications
(Abelson et al. Nature 2018). All data were made available to public repositories during
that submission. Targeted sequencing data for the discovery cohort are deposited in the
European Genome-phenome Archive (http://www.ebi.ac.uk/ega/) under accession
number EGAD00001003583. Simulated data has been made available through GitHub at
https://github.com/kimskead/popgenArch. Source data for figures are provided with this
paper. Source data are provided with this paper.

Code availability
The reproducible code has been made available through GitHub at https://github.com/
kimskead/popgenArch®’.
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